Regioselective Copper-Catalyzed Dicarbonylation of Imidazo[1,2-a]pyridines with N,N-Disubstituted Acetamide or Acetone: An Approach to 1,2-Diketones Using Molecular Oxygen

Changcheng Wang,^{†,§} Sai Lei,^{†,§} Hua Cao,^{*,‡} Shuxian Qiu,[‡] Jingyun Liu,[‡] Hao Deng,[‡] and Caijuan Yan[‡]

 † College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China

[‡]School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China

Supporting Information

ABSTRACT: A novel copper-catalyzed regioselective double carbonylation of imidazo[1,2-*a*]pyridines with N,N-disubstituted acetamide or acetone using molecular oxygen has been described. It has provided a new approach to synthesize 1,2-carbonyl imidazo[1,2-*a*]pyridines, which are important substrates and intermediates in preparation of fine chemicals. The product shares a skeleton similar to that of Zolpidem, one of the most prescribed drugs in the world. ¹⁸O-labeling experiments unambiguously established that the oxygen source of products originated from O₂ rather than H₂O.

Transition-metal catalysis¹ is arguably the most fundamental subject for the formation of C-C bonds in modern organic chemistry because of its implications on both industrial and scientific levels. Catalysis reactions based on palladium, platinum, ruthenium, copper, etc., have been studied for more than a hundred years. Especially, transition-metal-catalyzed cross-coupling transformation is among the most important methods for C-C bond formation, such as Heck,² Suzuki,³ Hiyama,⁴ Stille,⁵ and Negishi⁶ et al. However, these crosscoupling reactions generally need functionalized substrates. Recently, transition-metal-catalyzed direct conversion of C-H bonds into C-C bonds' can potentially lead to a more convenient synthesis with a reduced number of synthetic operations and thus has attracted great interest due to its unique advantages, such as low cost, higher selectivity, atomeconomical, and environmentally benign. Great and elegant progress has been achieved in the transition-metal-catalyzed direct C-H activation to synthesize carbonyl compounds.⁸ In recent years, the oxidative cross-coupling of (hetero)arene C-H bonds with C_{sp3} C-H bonds has witnessed a remarkable transformation. In a challenging fashion,9 our group has recently developed an efficient oxidative cross-coupling of imidazo[1,2-a]pyridines C-H bonds with C_{sp3} C-H bonds of DMSO for the formation of a new $C_{sp2}^{-r_{sp2}}-C_{sp2}$ bond to synthesize C3-formylation imidazo[1,2-a]pyridines.

1,2-Dicarbonyl derivatives are important starting materials and intermediates in preparation of fine chemicals. Classical routes to synthesize 1,2-dicarbonyl derivatives mainly relied on oxidation of 1,2-diols,¹⁰ alkyne,¹¹ and alkene.¹² Recently, a successful and elegant process for the synthesis of C3dicarbonyl indoles has been reported by Li,¹³ Müller,¹⁴ Wu,¹⁵ and Li¹⁶ et al., respectively. Although investigation in this field has been conducted, the development of a new method is still highly desirable for the direct introduction of dicarbonyl functional groups onto the (hetero)arene via C–H bond cleavage.

On the other hand, imidazo[1,2-a]pyridine and its derivatives are a fundamental class of heterocycles which have exhibited remarkable biological activities¹⁷ and have been found to be key structural units in drugs, such as zolpidem, alpidem, zolimidine, olprinone, saripidem, and necopidem (Scheme 1). In the past few years, our group¹⁸ and others¹⁹ have reported many transformations for the synthesis of imidazo[1,2-a]pyridines. Our current interest is preparing C-3 1,2-dicarbonyl imidazo-[1,2-a]pyridine derivatives by direct C–H functionalization. Herein, a novel copper-catalyzed regioselective dicarbonylation of imidazo[1,2-a]pyridines with N,N-disubstituted acetamide or acetone has been developed using molecular oxygen.

The model reaction of imidazo[1,2-*a*]pyridines with DMA was examined with a variety of copper sources, additives, oxidants, and temperatures, and the results are summarized in Table 1. To our delight, using O_2 as the oxidant, AcOH as the

Received: October 19, 2015 Published: November 23, 2015

Scheme 1. Imidazo[1,2-a]pyridines-Containing Drugs

Table 1. Optimization of Reaction Conditions^a

		н о)	
$H + \frac{1}{2}$					
	1a	2a			
entry	catalyst	additive	oxidant	T/°C	yield (%) ^b
, 1	Cu(OAc)	AcOH	0.	120	65
2	$Cu(OAc)_2$	TfOH	O_2	120	53
3	$Cu(OAc)_2$	TFA	O_2	120	57
4	$Cu(OAc)_2$	РЬСООН	0,	120	38
5	$Cu(OAc)_2$	K ₂ CO ₂	0 ₂	120	N.P.
6 ^c	$Cu(OAc)_2$	AcOH/ <i>t</i> -AmOH	0 ₂	120	82
7	CuCh	AcOH/t-AmOH	0 ₂	120	20
8	CuF2	AcOH/t-AmOH	0 ₂	120	trace
9	CuBr ₂	AcOH/t-AmOH	0 ₂	120	14
10	$Cu(CF_3SO_3)_2$	AcOH/t-AmOH	0 ₂	120	78
11	$Cu(OAc)_2$	AcOH/t-AmOH	AgOAc	120	23
12	$Cu(OAc)_2$	AcOH/t-AmOH	AgOTf	120	26
13	$Cu(OAc)_2$	AcOH/t-AmOH	DDQ	120	trace
14	$Cu(OAc)_2$	AcOH/t-AmOH	ТВНР	120	71
15	$Cu(OAc)_2$	AcOH/t-AmOH	air	120	12
16	$Cu(OAc)_2$	AcOH/t-AmOH	O ₂	140	77
17	$Cu(OAc)_2$	AcOH/t-AmOH	0 ₂	100	68
18	$Cu(OAc)_2$	AcOH/t-AmOH	0 ₂	rt	N.P.
19	$Cu(OAc)_2$	AcOH/t-AmOH	O_2 (5 atm)	120	36
20^d	$Cu(OAc)_2$	AcOH/t-AmOH	O ₂	120	66
21 ^e	$Cu(OAc)_2$	AcOH/t-AmOH	O ₂	120	70
22^{f}	$Cu(OAc)_2$	AcOH/t-AmOH	O ₂	120	53
23 ^g		AcOH/t-AmOH	O ₂	120	N.P.
24	FeCl ₃	AcOH/t-AmOH	O_2	120	N.P.
^a Reaction conditio	ons: 1a (0.5 mmol), catalyst	(10 mol %), additive (10 mol %	6), O2/air (500 mL); othe	r oxidant (1.0 mmol), DMA (3.0 mL), rt–

^{*a*}Reaction conditions: **1a** (0.5 mmol), catalyst (10 mol %), additive (10 mol %), O_2/air (500 mL); other oxidant (1.0 mmol), DMA (3.0 mL). rt– 140 °C, 24 h. ^{*b*}Yields determined by GC analysis using *n*-octadecane as internal standard. ^{*c*}*t*-AmOH (20 mol %). ^{*d*}Carried out in a sealed tube (25 mL). ^{*e*}Carried out for 18 h. ^{*f*}Carried out for 12 h. ^{*g*}Without Cu(OAc)₂.

additive, and 10 mol % of $Cu(OAc)_2$ as the catalyst provided the desired products in 65% yield (Table1, entry 1). The acidic reaction system brought about a beneficial effect and could promote the reaction. Other organic acids, such as TfOH, TFA, and PhCO₂H, were next employed, and the desired products **3a** were generated in 38–57% (Table1, entries 2–4). However, when K₂CO₃ was employed as the additive, no product **3a** was obtained (Table1, entry 5). Interestingly, when the reaction was carried out using *t*-AmOH and AcOH as the additives in the presence of Cu(OAc)₂ and O₂, the product **3a** was formed in 82% yield (Table 1, entry 6). The results indicated that copper as the catalyst can catalyze the C3-dicarbonylation of imidazo[1,2-*a*]pyridines with DMA. Then, other copper metal salts, such as CuCl₂, CuF₂, CuBr₂, and Cu(CF₃SO₃)₂, were tested (Table1, entries 7–10). The experiment indicated that Cu(OAc)₂ was most effective among the metal catalysts. Oxidants including AgOAc, AgOTf, DDQ, TBHP, and air were also probed in the reaction, which led to 3a in the lower yields as compared to that of O₂ (Table 1, entries 11–15). Subsequently, various temperatures were examined (Table 1, entries 16–18), and the results indicated that 120 °C was the best choice. We then tried to improve the yield by increasing the oxygen pressure (5 atm), but the yield decreased to 36% (Table 1, entry 19). The product 3a was obtained in 66% yield when the reaction was performed in a pressure tube (Table 1, entry 20). In addition, the reaction was carried out for 12 h or

Table 2. Synthesis of 1,2-Dicarbonyl Imidazo[1,2-a]pyridines

18 h, but the yield of **3a** was decreased (Table 1, entries 21–22). The control experiments indicated that product **3a** was not formed in the absence of $Cu(OAc)_2$ or using FeCl₃ as the catalyst (Table 1, entries 23–24).

The regioselective C3-dicarbonylation of imidazo[1,2-a]pyridines with DMA was examined under the conditions of entry 6 in Table 1. As shown in Table 2, various imidazo [1,2a pyridine derivatives reacted with 2a smoothly, and these reactions occurred in moderate to good yields. 2-Unsubstituted imidazo[1,2-a]pyridines were first employed under the optimized conditions. Different groups on the pyridine ring, having 5-CH₃, 6-CH₃, 7-CH₃, and 8-CH₃ substitution, smoothly participated in this C-3 dicarbonylation process to provide the corresponding 1,2-dicarbonyl imidazo [1,2-a]pyridines 3a-3e in satisfactory yields (74-81%). No regioisomeric products were observed by GC-MS and ¹H NMR spectroscopy. Selective C-3 cross-coupling products were obtained because the electron density distribution of C3(-0.125) was higher than that of C2(-0.054).¹⁹ Similar results^{19f,j} were also reported in others. We were also pleased to find that this transformation was further found to be successfully applied to catalyze the C3-dicarbonylation of 2-CH₃, 2-Ph, or 2-C(CH₃)₃ substituted imidazo[1,2-a]pyridines, affording the corresponding products 3f-3p in 51-78% yields. However, imidazo[1,2-a]pyridines with electron-withdrawing groups (CF₃, CO₂Et) at C2 could not perform the dicarbonylation with DMA. It was also noted that a trace amount of desired product 3t was not formed using 6iodoimidazo [1,2-a] pyridine as the substrate. We then tried to

Note

synthesize the Zolpidem or similar molecule, but the yield was not so good (<10%).

Extending the investigation further, *N*,*N*-diethylacetamide **2b** was also employed, and the results are presented in Scheme 2.

Scheme 2. Reaction of 1 with 2b

The transformation of 1a with 2b performed very well and formed the desired products C3-1,2-dicarbonyl imidazo[1,2-a]pyridines 4a-4c in 45-58% yields under the optimized conditions. When *N*,*N*-diphenylacetamide as a substrate was used in the reaction, only trace amounts of 4d were formed.

Next, acetone was investigated for further extending the substrate scope, and the results are summarized in Table 3. Interestingly, the desired product **Sa** was formed in 63% yield with very good regioselectivity when the reaction was carried out in a sealed tube (25 mL) using $Cu(OAc)_2$ as catalyst,

Table 3. Dicarbonylation of Imidazo[1,2-a]pyridines with Acetone^a

AcOH and *t*-AmOH as additives, O_2 as oxidant, in DCE. Subsequently, a series of imidazo[1,2-*a*]pyridines were examined. All the reactions proceeded smoothly in this C-3 dicarbonylation process to give the corresponding imidazo[1,2*a*]pyridines in moderate to good yields. The results indicated that this new methodology was further found to be successfully

applied to catalyze the carbonylation of substituted imidazo-[1,2-a]pyridines with acetone. For further investigation, 6-chloroimidazo[1,2-a]pyridine or 6-chloro-2-phenylimidazo[1,2-a]pyridine could also be used as the substrate in the reaction, and the products **5p** and **5q** were obtained in 15% and 76% yields, respectively.

To gain more insight into the mechanism of this Cu(II)catalyzed dicarbonylation reaction, a series of control experiments were conducted to determine the source of the oxygen atom. ¹⁸O-labeling experiments were first used to explore the potential role of O_2 in the reaction. The reaction of 1a with 2a gave the ¹⁸O-labeled C3-dicarbonyl imidazo [1,2-a] pyridine 3a', which was confirmed by GC-MS analysis (Scheme 3a). However, the desired product 3a and product 3a' with ¹⁸O in the carbonyl group were not detected in the presence of $H_2^{18}O$ under the standard reaction conditions(Scheme 3b). The ¹⁸Olabeling experiments clearly showed that the oxygen atom of the carbonyl group in the product derived from the O₂ rather than H₂O. In addition, a radical inhibitor (e.g., TEMPO) was used to identify the reaction whether was a radical process in this transformation (Scheme 3c). The result showed that the reaction had been inhibited and a radical process was involved for this transformation. Furthermore, the desired product 5a was not formed by using pyruvaldehyde as a substrate. As a result, the carbonyl compound coupling with imidazo 1,2a]pyridine had first taken place and then the coupling product was oxygenated to give the final product (Scheme 3d).

On the basis of the above results, a plausible mechanism for this transformation is illustrated in Scheme 4. Initially, radical intermediate I is formed from 2a' via a single electron transfer (SET) oxidation in the presence of Cu(II) species. Subsequently, radical I could directly add to the imidazo[1,2*a*]pyridine 2a, followed by another SET and proton transfer, to generate II, which is not isolated in the reaction. Intermediate II undergoes a single electron transfer oxidation to form intermediate radical intermediate III, which is trapped by

Scheme 3. Control Experiments for Investigation of the Mechanism

Scheme 4. Proposed Mechanism

dioxygen to give the radical intermediate IV. Intermediate V, generated by IV via capture of a hydrogen from the reaction medium, undergoes elimination of water to give the desired product 3a. AcOH has played a key role in this transformation. It aids the formation of intermediate 2a' and also promotes the transformation of product from intermediate V.

In conclusion, we have developed a versatile copper-catalyzed system for the dicarbonylation of imidazo[1,2-a]pyridine derivatives with DMA or acetone via a selectively direct oxidation coupling reaction. This process provided a new route to prepare 1,2-dicarbonyl imidazo[1,2-a]pyridines, which should be significant for the construction of imidazo[1,2-a]pyridine libraries. Imidazopyridine with an *N*,*N*-dimethylamide garnished carbon chain could be obtained through Cucatalyzed C–H activation.

EXPERIMENTAL SECTION

¹H and ¹³C NMR spectra were recorded at 400 and 100 Hz, respectively. Mass spectra were obtained on ESIMS. Elemental analyses were performed with an elemental analyzer. GC–MS was obtained using electron ionization. TLC was performed using commercially prepared 100–400 mesh silica gel plates.

Synthesis of 3a According to the Following Procedure. Under an oxygen atmosphere, a reaction tube was charged with imidazo[1,2-a]pyridine (1a, 59 mg, 0.5 mmol), $Cu(OAc)_2$ (18 mg, 10 mol %), AcOH (6 mg, 10 mol %), *t*-AmOH (17.6 mg, 20 mol %), and DMA (3 mL). The mixture was stirred at 120 °C for 24 h. After reaction completion, as monitored by TLC and GC–MS analysis, the solvent was then removed and the crude product was separated by column chromatography (eluted with petroleum ether:ethyl acetate = 1:1) to give a pure sample of 3a.

Synthesis of 5a According to the Following Procedure. Under an oxygen atmosphere, a reaction tube was charged with imidazo[1,2-a]pyridine (1a, 59 mg, 0.5 mmol), acetone (2c, 145 mg, 2.5 mmol), $Cu(OAc)_2$ (18 mg, 10 mol %), AcOH (6 mg, 10 mol %), t-AmOH (17.6 mg, 20 mol %), and DCE (3 mL). The mixture was stirred at 120 °C for 24 h while adding acetone (2c, 2.5 mmol) for every 8 h. After reaction completion, the solvent was then removed and the crude product was separated by column chromatography (eluted with petroleum ether:ethyl acetate = 2:1) to give a pure sample of 5a. 2-(*Imidazo*[1,2-*a*]*pyridin-3-yl*)-*N*,*N*-*dimethyl*-2-oxoacetamide (**3a**). Yield: 81.4 mg, 75%; white solid, m.p.: 121–122 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 6.8 Hz, 1H), 8.40 (s, 1H), 7.83 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 6.8 Hz, 1H), 3.14 (s, 3H), 3.10 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.5, 165.8,149.7, 147.0, 130.4, 128.9, 122.0, 118.0, 115.8, 37.5, 34.7. HRMS *m*/*z* (ESI+) calcd for C₁₁H₁₂N₃O₂ [M + H]⁺: 218.0930, found: 218.0923.

N,N-Dimethyl-2-(5-methyl-H-imidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**3b**). Yield: 85.5 mg, 74%; brown liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H), 6.87 (d, *J* = 6.4 Hz, 1H), 3.06 (s, 3H), 3.00 (s, 3H), 2.85 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 117.7, 167.1, 152.6, 149.2, 141.2, 130.9, 124.5, 117.0, 115.5, 37.6, 34.6, 22.9. HRMS *m/z* (ESI+) calcd for C₁₂H₁₄N₃O₂ [M + H]⁺: 232.1086, found: 232.1083.

N,*N*-Dimethyl-2-(6-methylimidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**3c**). Yield: 86.6 mg, 75%; white solid, m.p.: 113–114 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 8.33 (s, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 3.13 (s, 3H), 3.09 (s, 3H), 2.46 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 166.0, 148.7, 146.9, 133.2, 126.9, 126.1, 121.8, 117.1, 37.5, 34.7, 18.4. HRMS *m*/*z* (ESI+) calcd for C₁₂H₁₄N₃O₂ [M + H]⁺: 232.1086, found: 232.1083.

N,*N*-Dimethyl-2-(7-methylimidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**3d**). Yield: 90.1 mg, 78%; yellow solid, m.p.: 198–199 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.39 (d, *J* = 7.2 Hz, 1H), 8.27 (s, 1H), 7.51 (s, 1H), 6.94 (d, *J* = 6.8 Hz, 1H), 3.06 (s, 3H), 3.02 (s, 3H), 2.48 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.1, 166.0, 147.2, 142.3, 128.0, 127.9, 123.4, 118.2, 116.8, 37.5, 34.8, 21.7. HRMS *m/z* (ESI+) calcd for C₁₂H₁₄N₃O₂ [M + H]⁺: 232.1086, found: 232.1083.

N,N-Dimethyl-2-(8-methylimidazo[1,2-*a*]*pyridin-3-yl*)-2-oxoacetamide (**3e**). Yield: 93.6 mg, 81%; white solid, m.p.: 57–60 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.46 (d, *J* = 6.4 Hz, 1H), 8.36 (s, 1H), 7.4 (d, *J* = 6.4 Hz, 1H), 7.09 (t, *J* = 6.4 Hz, 1H), 3.14 (s, 3H), 3.09 (s, 3H), 2.70 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.5, 166.0, 149.8, 146.2, 129.5, 128.0, 126.6, 122.3, 115.9, 37.5, 34.7, 16.9. HRMS *m*/*z* (ESI+) calcd for C₁₂H₁₄N₃O₂ [M + H]⁺: 232.1086, found: 232.1083.

N,N-Dimethyl-2-(2-methylimidazo[1,2-*a*]*pyridin-3-yl*)-2-oxoacetamide (**3f**). Yield: 73.9 mg, 64%; white solid, m.p.: 110–112 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 6.0 Hz, 1H), 7.62(d, *J* = 8.4 Hz, 1H), 7.48 (q, *J* = 5.1 Hz, 1H), 7.04 (t, *J* = 6.4 Hz, 1H), 3.06 (s, 3H), 2.98 (s, 3H), 2.50 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.3, 166.9, 156.0, 148.1, 130.7, 129.1, 118.8, 116.8, 115.3, 37.1, 34.1, 15.6. HRMS *m*/*z* (ESI+) calcd for C₁₂H₁₄N₃O₂ [M + H]⁺: 232.1086, found: 232.1083.

2-(2,7-Dimethylimidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3g**). Yield: 74.7 mg, 61%; brown solid, m.p.:113–114 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.460 (d, *J* = 6.8 Hz, 1H), 7.39(s, 1H), 6.87 (d, *J* = 6.8 Hz, 1H), 3.05 (s, 3H), 2.97 (s, 3H), 2.48 (s, 3H), 2.43 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.8, 167.0, 156.1, 148.5, 128.3, 117.7, 115.6, 37.1, 34.2, 21.7, 15.5. HRMS *m*/*z* (ESI+) calcd for C₁₃H₁₆N₃O₂ [M + H]⁺: 246.1243, found: 246.1324.

2-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3h**). Yield: 73.5 mg, 60%; white solid, m.p.: 114–115 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 8.34 (s, 1H), 7.72(d, *J* = 9.2 Hz, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 3.13 (s, 3H), 3.09 (s, 3H), 2.46 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 166.0, 148.7, 146.9, 133.3, 126.9, 126.1, 121.8, 117.2, 37.5, 34.7, 18.4. HRMS *m*/*z* (ESI+) calcd for C₁₃H₁₆N₃O₂ [M + H]⁺: 246.1243, found: 246.1234.

2-(2,8-Dimethylimidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3i**). Yield: 85.8 mg, 70%; white solid, m.p.: 132–135 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 6.8 Hz, 1H), 7.37 (d, J = 7.2 Hz, 1H), 7.02 (t, J = 6.8 Hz, 1H), 3.13 (s, 3H), 3.05 (s, 3H), 2.66 (s, 3H), 2.60 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.3, 167.0, 155.4, 148.2, 129.9, 126.9, 126.8, 119.1, 115.3, 37.1, 34.2, 16.9, 15.6. HRMS m/z (ESI+) calcd for C₁₃H₁₅N₃NaO₂ [M + Na]⁺: 268.1062, found: 268.1056.

N,*N*-Dimethyl-2-oxo-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (**3***j*). Yield: 98.2 mg, 67%; brown solid, m.p.: 129–131 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.56–7.32 (m, 6H), 7.10 (d, *J* = 6.4 Hz, 1H), 2.68 (s, 3H), 2.36 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 181.6, 165.7, 157.6, 148.1, 132.9, 130.9, 129.6, 129.5, 129.3, 127.8, 118.6, 117.5, 115.7, 36.9, 33.4. HRMS *m*/*z* (ESI+) calcd for C₁₇H₁₆N₃O₂ [M + H]⁺: 294.1243, found: 294.1240.

N,*N*-Diethyl-2-(6-methyl-2-phenyl-H-imidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**3**k). Yield: 102.8 mg, 67%; white solid, m.p.: 162– 163 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.72 (d, *J* = 9.2 Hz, 1H), 7.58–7.46 (m, 6H), 2.76 (s, 3H), 2.48 (s, 3H), 2.44 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 181.5, 165.8, 157.5, 147.1, 133.6, 133.1, 129.6, 129.4, 127.8, 127.4, 125.9, 118.5, 116.8, 36.9, 33.4, 18.5. HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₈N₃O₂ [M + H]⁺: 308.1399, found: 308.1396.

N,N-Diethyl-2-(8-methyl-2-phenyl-H-imidazo[1,2-*a*]*pyridin-3-yl*)-2-*oxoacetamide* (**3**). Yield: 116.7 mg, 76%; white liquid. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 6.8 Hz, 1H), 7.49 (t, *J* = 5.2 Hz, 2H), 7.36–7.28 (m, 4H), 6.99 (t, *J* = 6.8 Hz, 1H), 2.65 (s, 3H), 2.60 (s, 3H), 2.33 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 181.6, 165.8, 157.1, 148.2, 133.1, 130.0, 129.8, 129.4, 127.8, 127.6, 127.0, 119.0, 115.7, 36.9, 33.4, 17.0. HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₈N₃O₂ [M + H]⁺: 308.1399, found: 308.1396.

N,*N*-Diethyl-2-(7-methyl-2-phenyl-H-imidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**3m**). Yield: 119.7 mg, 78%; brown liquid. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 6.8 Hz, 1H), 7.57 (s, 3H), 7.46 (s, 3H), 7.01 (s, 1H), 2.75 (s, 3H), 2.52 (s, 3H), 2.44 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 181.2, 165.9, 157.9, 148.6, 142.7, 133.1, 129.6, 129.4, 128.5, 127.8, 118.4, 118.0, 116.3, 36.9, 33.4, 21.7. HRMS m/z (ESI+) calcd for C₁₈H₁₈N₃O₂ [M + H]⁺: 308.1399, found: 308.1396.

2-(2-tert-Butyl-7-methyl-H-imidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3n**). Yield: 89.0 mg, 62%; white solid, m.p.: 138–139 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, *J* = 7.2 Hz, 1H), 7.47 (s, 1H), 6.81 (d, *J* = 7.2 Hz, 1H), 3.07 (s, 3H), 2.99 (s, 3H), 2.42 (s, 3H), 1.47 (s, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.0, 167.7, 167.5, 147.3, 141.1, 127.5, 119.1, 117.5, 116.4, 37.4, 35.3, 34.5, 29.6, 21.3. HRMS *m*/*z* (ESI+) calcd for C₁₆H₂₂N₃O₂ [M + H]⁺: 288.1712, found: 288.1711.

2-(2-tert-Butyl-H-imidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3o**). Yield: 80.5 mg, 59%; Yellow solid, m.p.: 110–111 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, *J* = 6.8 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 6.92 (t, *J* = 6.0 Hz, 1H), 3.02 (s, 3H), 2.95 (s, 3H), 1.43 (s, 9H). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 180.4, 167.4, 166.9, 146.7, 129.3, 128.0, 119.3, 117.5, 115.1, 37.3, 35.2, 34.5, 29.6. HRMS *m*/*z* (ESI+) calcd for C₁₅H₁₉N₃NaO₂ [M + Na]⁺: 296.1375, found: 296.1373.

2-(2-tert-Butyl-8-methyl-H-imidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3p**). Yield: 77.5 mg, 54%; white solid, m.p.: 114–115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 6.8 Hz, 1H), 7.17 (d, *J* = 6.8 Hz, 1H), 6.82 (t, *J* = 6.8 Hz, 1H), 3.02 (s, 3H), 2.93 (s, 3H), 2.56 (s, 3H), 1.44 (s, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.33, 167.7, 166.5, 146.9, 128.2, 127.8, 125.7, 119.7, 114.9, 37.3, 35.4, 34.5, 29.5, 16.8. HRMS *m*/*z* (ESI+) calcd for C₁₆H₂₂N₃O₂ [M + H]⁺: 288.1712, found: 288.1711.

2-(2-tert-Butyl-6-methyl-H-imidazo[1,2-a]pyridin-3-yl)-N,N-dimethyl-2-oxoacetamide (**3q**). Yield: 73.2 mg, 51%; brown solid, m.p.: 168–169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.33 (d, *J* = 9.6 Hz, 1H), 3.11 (s, 1H), 3.03 (s, 1H), 2.38 (s, 3H), 1.51 (s, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.4, 167.6, 166.8, 145.7, 132.1, 126.2, 125.0, 121.0, 116.8, 37.3, 35.2, 34.4, 29.6, 18.6. HRMS *m*/*z* (ESI+) calcd for C₁₆H₂₂N₃O₂ [M + H]⁺: 288.1712, found: 288.1711.

N,*N*-Diethyl-2-(*H*-imidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (*4a*). Yield: 65.0 mg, 53%. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 6.8 Hz, 1H), 8.35 (s, 1H), 7.83 (d, *J* = 8.8 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 6.8 Hz, 1H), 3.57 (q, *J* = 7.2 Hz, 2H), 3.38 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.23 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.0, 165.6, 146.7, 136.3, 130.2, 128.9, 118.0, 115.8, 42.5, 39.4, 14.4, 12.8. ESI-MS *m*/*z* (%) 247(100) [M + H]⁺; HRMS *m*/*z* (ESI+) calcd for C₁₃H₁₅N₃NaO₂ [M + Na]⁺: 268.1057, found: 268.1062. *N*,*N*-diethyl-2-(6-methyl-H-imidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**4b**). Yield: 75.2 mg, 58%. ¹H NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 8.28 (s, 1H), 7.73 (d, *J* = 9.2 Hz, 1H), 7.44 (d, *J* = 9.2 Hz, 1H), 7.28 (s, 1H), 3.56 (q, *J* = 7.2 Hz, 2H), 3.37 (q, *J* = 6.8 Hz, 2H), 2.36 (s, 3H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.22 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.8, 165.7, 148.5, 146.4, 133.2, 126.9, 121.7, 117.1, 42.5, 39.4, 14.4, 18.4, 14.4, 12.8. Anal. calcd for C₁₄H₁₇N₃O₂, [M + Na]⁺: 282.1218, found: 282.1216.

N,*N*-Diethyl-2-(8-methyl-H-imidazo[1,2-a]pyridin-3-yl)-2-oxoacetamide (**4c**). Yield: 58.2 mg, 45%; brown solid, m.p.: 72–74 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.45 (d, *J* = 6.8 Hz, 1H), 8.31 (s, 1H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.08 (t, *J* = 6.2 Hz, 1H), 3.57 (q, *J* = 6.7 Hz, 2H), 3.37 (q, *J* = 7.1 Hz, 2H), 2.69 (s, 3H), 1.29 (t, *J* = 6.8 Hz, 3H), 1.22 (t, *J* = 6.4 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.9, 165.8, 149.7, 146.0, 129.4, 128.0, 126.6, 122.3, 115.8, 42.5, 39.4, 16.9, 14.4, 12.8. HRMS *m*/*z* (ESI+) calcd for C₁₄H₁₇N₃NaO₂ [M + Na]⁺: 282.1218, found: 282.1213.

1-(*Imidazo*[1,2-*a*]*pyridin*-3-*y*]*propane*-1,2-*dione* (**5***a*). Yield: 59.2 mg, 63%; yellow solid, m.p.: 49–51 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (d, *J* = 6.8 Hz, 1H), 8.84 (s, 1H), 7.85 (d, *J* = 8.8 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.20 (t, *J* = 6.8 Hz, 1H), 2.57 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.9, 177.2, 148.1, 140.5, 130.6, 129.1, 120.5, 118.0, 115.9, 25.2. ESI-MS *m*/*z* (%) 189(100) [M + H]⁺; Anal. Calcd for C₁₀H₈N₂O₂: C, 63.83; H, 4.29; N, 14.89; Found: C, 63.52; H, 4.32; N, 14.97.

1-(6-Methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5b**). Yield: 67.7 mg, 67%; brown oil. ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 8.75 (s, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 8.8Hz, 1H), 2.56 (s, 3H), 2.47 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.0, 177.0, 148.6, 147.9, 133.4, 127.1, 126.1, 120.2, 117.1, 25.2, 18.4. ESI-MS m/z (%) 203(100) [M + H]⁺; Anal. Calcd for C₁₁H₁₀N₂O₂: C, 65.34; H, 4.98; N, 13.85; Found: C, 65.01; H, 5.01; N, 13.94.

1-(8-Methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (5c). Yield: 62.6 mg, 62%; yellow solid, m.p.: 85–88 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (d, J = 6.4 Hz, 1H), 8.78 (s, 1H), 7.40 (d, J = 7.2 Hz, 1H), 7.09 (t, J = 6.4 Hz, 1H), 2.70 (s, 3H), 2.56 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.0, 177.2, 149.7, 147.5, 129.7, 128.1, 126.8, 120.8, 115.9, 25.3, 16.9. ESI-MS m/z (%) 203(100) [M + H]⁺; Anal. Calcd for C₁₁H₁₀N₂O₂: C, 65.34; H, 4.98; N, 13.85; Found: C, 65.05; H, 5.00; N, 13.92.

1-(7-Methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5d**). Yield: 72.7 mg, 72%; yellow solid, m.p.: 139–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (d, J = 7.2 Hz, 1H), 8.75 (s, 1H), 7.59 (s, 1H), 7.01 (d, J = 6.8 Hz, 1H), 2.55 (s, 3H), 2.52 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.1, 176.7, 150.0, 148.4, 142.5, 128.1, 120.2, 118.2, 116.8, 25.2, 21.6. ESI-MS *m*/*z* (%) 203(100) [M + H]⁺; Anal. Calcd for C₁₁H₁₀N₂O₂: C, 65.34; H, 4.98; N, 13.85; Found: C, 65.62; H, 4.95; N, 13.79.

1-(2-Methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5e**). Yield: 75.8 mg, 75%; brown solid, m.p.: 40–42 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, *J* = 4.0 Hz, 1H), 7.72 (t, *J* = 3.6 Hz, 1H), 7.59 (t, *J* = 4.4 Hz, 1H), 7.14 (d, *J* = 5.2 Hz, 1H), 2.58 (s, 3H), 2.56 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 200.3, 182.6, 156.3, 148.3, 130.8, 129.2, 117.8, 116.8, 115.4, 26.2, 17.1. ESI-MS *m*/*z* (%) 203(100) [M + H]⁺; Anal. Calcd for C₁₁H₁₀N₂O₂: C, 65.34; H, 4.98; N, 13.85; Found: C, 65.06; H, 5.01; N, 13.79.

1-(2,5-Dimethylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5f**). Yield: 83.2 mg, 77%; brown solid, m.p.: 56–58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.8 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 6.88 (d, *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 2.53 (s, 3H),2.52 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.9, 180.4, 155.5, 150.1, 140.2, 130.4, 120.6, 116.5, 114.4, 25.5, 22.4, 16.9. ESI-MS *m*/*z* (%) 217(100) [M + H]⁺; Anal. Calcd for C₁₂H₁₂N₂O₂: C, 66.65; H, 5.59; N, 12.96; Found: C, 66.32; H, 5.62; N, 13.02.

1-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5g**). Yield: 75.6 mg, 70%; brown oil. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 1H), 2.56 (s, 3H), 2.53 (s, 3H), 2.43 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 200.4, 182.5, 156.1, 147.2, 133.5, 127.4, 125.6, 117.6, 116.0, 26.2,

The Journal of Organic Chemistry

18.3, 17.1. ESI-MS m/z (%) 217(100) [M + H]⁺; Anal. Calcd for C₁₂H₁₂N₂O₂: C, 66.65; H, 5.59; N, 12.96; Found: C, 66.36; H, 5.61; N, 13.02.

1-(2,7-Dimethylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5h**). Yield: 77.8 mg, 72%; yellow solid, m.p.: 124–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.47 (d, *J* = 6.8 Hz, 1H), 7.46 (s, 1H), 6.95 (d, *J* = 6.8 Hz, 1H), 2.56 (s, 3H), 2.53 (s, 3H), 2.50 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 200.5, 182.2, 156.6, 148.7, 142.8, 134.6, 128.4, 117.7, 115.7, 26.3, 21.6, 17.1. ESI-MS *m*/*z* (%) 217(100) [M + H]⁺; Anal. Calcd for C₁₂H₁₂N₂O₂: C, 66.65; H, 5.59; N, 12.96; Found: C, 66.97; H, 5.56; N, 12.89.

1-(2-(tert-Butyl)-8-methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5**i). Yield: 82.6 mg, 64%; yellow solid, m.p.: 71–73 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 7.2 Hz, 1H), 7.22(d, J = 7.2 Hz, 1H), 6.86 (t, J = 7.0 Hz, 1H), 2.62 (s, 3H), 2.60 (s, 3H), 1.46 (s, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.5, 184.9, 165.9, 147.1, 128.1, 127.6, 125.9, 117.6, 114.5, 35.2, 30.9, 25.9, 16.8. ESI-MS m/z(%) 259(100) [M + H]⁺; Anal. Calcd for C₁₅H₁₈N₂O₂: C, 69.74; H, 7.02; N, 10.84; Found: C, 69.42; H, 7.06; N, 10.89.

1-(2-(tert-Butyl)-7-methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5***j*). Yield: 105.8 mg, 82%; brown solid, m.p.: 49–51 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, J = 7.2 Hz, 1H), 7.47 (s, 1H), 6.82 (d, J = 7.2 Hz, 1H), 2.60 (s, 3H), 2.45 (s, 3H), 1.45 (s, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.5, 184.5, 166.9, 147.5, 141.5, 141.0, 127.5, 117.1, 116.1, 35.1, 30.9, 25.9, 21.4. ESI-MS m/z (%) 259(100) [M + H]⁺; Anal. Calcd for C₁₅H₁₈N₂O₂: C, 69.74; H, 7.02; N, 10.84; Found: C, 69.48; H, 7.05; N, 10.90.

1-(2-(tert-Butyl)-6-methylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (5k). Yield: 87.7 mg, 68%; yellow solid, m.p.: 41–43 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 9.6 Hz, 1H), 2.60 (s, 3H), 2.37 (s, 3H), 1.45 (s, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.3, 184.9, 166.1, 145.9, 132.1, 126.2, 124.6, 117.1, 116.6, 35.0, 30.9, 25.8, 18.4. ESI-MS m/z (%) 259(100) [M + H]⁺; Anal. Calcd for C₁₅H₁₈N₂O₂: C, 69.74; H, 7.02; N, 10.84; Found: C, 69.98; H, 6.99; N, 10.78.

1-(2-Phenylimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (51). Yield: 106.9 mg, 81%; yellow solid, m.p.: 145–148 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 6.8 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.54–7.44 (m, 5H), 7.17 (t, J = 7.2 Hz, 1H), 2.26 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.9, 184.5, 158.1, 148.4, 133.8, 130.8, 129.9, 129.9, 129.8, 128.9, 128.5, 117.7, 115.7, 25.9. ESI-MS m/z (%) 265(100) [M + H]⁺; Anal. Calcd for C₁₆H₁₂N₂O₂: C, 72.72; H, 4.58; N, 10.60; Found: C, 72.41; H, 4.61; N, 10.66.

1-(8-Methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)propane-1,2dione (**5m**). Yield: 108.4 mg, 78%; yellow solid, m.p.: 119–121 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (d, J = 6.8 Hz, 1H), 7.55–7.40 (m, 6H), 7.07 (t, J = 7.0 Hz, 1H), 2.72 (s, 3H), 2.23 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.0, 184.6, 157.5, 148.4, 133.9, 130.1, 130.0, 129.9, 129.8, 128.5, 127.8, 126.5, 115.7, 25.9, 17.1. ESI-MS *m*/*z* (%) 279(100) [M + H]⁺; Anal. Calcd for C₁₇H₁₄N₂O₂: C, 73.37; H, 5.07; N, 10.07; Found: C, 73.01; H, 5.10; N, 10.13.

1-(7-Methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)propane-1,2dione (**5n**). Yield: 116.8 mg, 84%; yellow solid, m.p.: 98–100 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (d, J = 6.8 Hz, 1H), 7.60 (s, 1H), 7.54–7.43 (m, 5H), 7.00 (d, J = 7.2 Hz, 1H), 2.52 (s, 3H), 2.25 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.1, 184.1, 158.2, 148.7, 142.9, 133.7, 129.9, 129.8, 129.8, 128.5, 128.0, 118.1, 116.3, 26.0, 21.7. ESI-MS m/z (%) 279(100) [M + H]⁺; Anal. Calcd for C₁₇H₁₄N₂O₂: C, 73.37; H, 5.07; N, 10.07; Found: C, 73.56; H, 5.06; N, 10.01.

1-(6-Methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)propane-1,2dione (**50**). Yield: 111.2 mg, 80%; yellow solid, m.p.: 65–67 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.54–7.46 (m, 6H), 2.47 (s, 3H), 2.26 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ198.7, 184.4, 156.7, 146.5, 134.1, 133.1, 130.0, 129.8, 128.6, 126.9, 126.4, 116.9, 116.5, 25.9, 18.5. ESI-MS m/z (%) 279(100) [M + H]⁺; Anal. Calcd for C₁₇H₁₄N₂O₂: C, 73.37; H, 5.07; N, 10.07; Found: C, 73.15; H, 5.09; N, 10.12.

1-(6-Chloroimidazo[1,2-a]pyridin-3-yl)propane-1,2-dione (**5p**). Yield: 16.7 mg, 15%; yellow solid, m.p.: 75–78 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (d, J = 1.6 Hz, 1H), 8.89 (s, 1H), 7.93 (d, J = 9.2 Hz, 1H), 7.66 (q, J = 3.7 Hz, 1H), 2.58 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.0, 177.2, 146.0, 135.5, 133.3, 132.6, 127.1, 125.1, 117.7, 29.7, 25.0. ESI-MS m/z (%) 223(100) [M + H]⁺; Anal. Calcd for C₁₀H₇ClN₂O₂: C, 53.95; H, 3.17; N, 12.58; Found: C, 53.74; H, 3.19; N, 12.65.

1-(6-Chloro-2-phenylimidazo[1,2-a]pyridin-3-yl)propane-1,2dione (**5***q*). Yield: 113.2 mg, 76%; yellow solid, m.p.: 80–82 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.45–7.58 (m, 6H), 2.76 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.3, 184.5, 158.2, 146.6, 133.4, 131.7, 130.0, 129.7, 128.5, 126.7, 123.8, 117.8,, 25.8. ESI-MS *m*/*z* (%) 299(100) [M + H]⁺; Anal. Calcd for C₁₆H₁₁ClN₂O₂: C, 64.33; H, 3.71; N, 9.38; Found: C, C, 64.01; H, 3.72; N, 9.43.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b02417.

Copies of ¹H and ¹³CNMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: caohua@gdpu.edu.cn.

Author Contributions

[§]C. Wang and S. Lei contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was financially supported by the National Natural Science Foundation of China (21302023) and the Project of Department of Education of Guangdong Province (2013kjcx0111), and the Innovation and Strong School Project of Guangdong Pharmaceutical University (2014KTSCX120).

REFERENCES

(1) (a) Luh, T. Y.; Leung, M. K.; Wong, K. T. Chem. Rev. 2000, 100, 3187. (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (c) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468.

(2) (a) Heck, R. F. Org. React. 1982, 27, 345. (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.

(3) (a) Miyaura, N.; Yamada, K.; Suzuki, A. *Tetrahedron Lett.* **1979**, 20, 3437. (b) Miyaura, N.; Suzuki, A. *J. Chem. Soc., Chem. Commun.* **1979**, 24, 866.

(4) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918.

(5) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.

(6) Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729.

(7) (a) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (c) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (e) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459. (f) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (g) Guin, S.; Rout, S. K.; Banerjee, A.; Nandi, S.; Patel, B. K. Org. Lett. 2012, 14, 5294. (h) Deng, G.; Zhao, L.; Li, C. J. Angew. Chem., Int. Ed. 2008, 47, 6278. (i) Ohta, M.; Quick, M. P.; Yamaguchi, J.; Wünsch, B.; Itami, K. Chem.—Asian J. 2009, 4, 1416.

(8) (a) Chen, J.; Liu, B.; Liu, D.; Liu, S.; Cheng, J. Adv. Synth. Catal.
2012, 354, 2438. (b) Qian, J.; Zhang, Z.; Liu, Q.; Liu, T.; Zhang, G. Adv. Synth. Catal. 2014, 356, 3119. (c) Walvoord, R. R.; Berritt, S.; Kozlowski, M. C. Org. Lett. 2012, 14, 4086. (d) Guin, S.; Rout, S. K.; Gogoi, A.; Ali, W.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 2559. (e) Wu, W.; Su, W. J. Am. Chem. Soc. 2011, 133, 11924.

The Journal of Organic Chemistry

(f) Chennapuram, M.; Emmadi, N. R.; Bingi, C.; Atmakur, K. RSC Adv. 2015, 5, 19418.

(9) (a) Santra, S. K.; Banerjee, A.; Khatun, N.; Patel, B. K. *Eur. J. Org. Chem.* **2015**, 2015, 350. (b) Li, L. T.; Huang, J.; Li, H. Y.; Wen, L. J.; Wang, P.; Wang, B. *Chem. Commun.* **2012**, 48, 5187.

(10) Zhao, X. F.; Zhang, C. Synthesis 2007, 2007, 551.

(11) (a) Wan, Z.; Jones, C. D.; Mitchell, D.; Pu, J. Y.; Zhang, T. Y. J. Org. Chem. 2006, 71, 826. (b) Zhang, W.; Zhang, J.; Liu, Y.; Xu, Z. Synlett 2013, 24, 2709. (c) Ren, W.; Xia, Y.; Ji, S. J.; Zhang, Y.; Wan, X.; Zhao, J. Org. Lett. 2009, 11, 1841. (d) Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C. W. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett 2010, 2010, 1402. (e) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y. Synthesis 2008, 2008, 2879.

(12) (a) Hayashi, M.; Shibuya, M.; Iwabuchi, Y. Synlett **2012**, 23, 1025. (b) Chen, S.; Liu, Z.; Shi, E.; Chen, L.; Wei, W.; Li, H.; Cheng, Y.; Wan, X. Org. Lett. **2011**, 13, 2274.

(13) (a) Wu, J. C.; Song, R. J.; Wang, Z. Q.; Huang, X. C.; Xie, Y. X.; Li, J. H. Angew. Chem., Int. Ed. **2012**, *51*, 3453. (b) Tang, R. Y.; Guo, X. K.; Xiang, J.; Li, J. H. J. Org. Chem. **2013**, *78*, 11163.

(14) Merkul, E.; Dohe, J.; Gers, C.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2011, 50, 2966.

(15) Gao, Q.; Zhang, J.; Wu, X.; Liu, S.; Wu, A. Org. Lett. 2015, 17, 134.

(16) Xing, Q.; Shi, L.; Lang, R.; Xia, C.; Li, F. Chem. Commun. 2012, 48, 11023.

(17) (a) Ducray, R.; Simpson, I.; Jung, F. H.; Nissink, W. M.; Kenny, P. W.; Fitzek, M.; Walker, G. E.; Ward, L. T.; Hudson, K. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 4698. (b) Ducray, R.; Jones, C. D.; Jung, F. H.; Simpson, I.; Curwen, J.; Pass, M. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 4702. (c) Trabanco, A. A.; Tresadern, G.; Macdonald, G. J.; Vega, J. A.; de Lucas, A. I.; Matesanz, E.; García, A.; Linares, M. L.; de Diego, S. A. A.; Alonso, J. M.; Oehlrich, D.; Ahnaou, A.; Drinkenburg, W.; Mackie, C.; Andrés, J. I.; Lavreysen, H.; Cid, J. M. *J. Med. Chem.* **2012**, *55*, 2688. (d) Tresadern, G.; Cid, J. M.; Macdonald, G. J.; Vega, J. A.; de Lucas, A. I.; García, A.; Matesanz, E.; Linares, M. L.; Oehlrich, D.; Lavreysen, H.; Cid, J. M. J. *Med. Chem.* **2012**, *55*, 2688. (d) Tresadern, G.; Trabanco, A. A. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 175.

(18) (a) Cao, H.; Zhan, H.; Lin, Y.; Lin, X.; Du, Z.; Jiang, H. Org. Lett. 2012, 14, 1688. (b) Cao, H.; Liu, X. H.; Zhao, L.; Cen, J.; Lin, J.; Zhu, Q.; Fu, M. Org. Lett. 2014, 16, 146. (c) Cao, H.; Liu, X.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Chen, Y. J. Org. Chem. 2014, 79, 11209. (d) Cao, H.; Lei, S.; Li, N.; Chen, L.; Liu, J.; Cai, H.; Qiu, S.; Tan, J. Chem. Commun. 2015, 51, 1823. (e) Cao, H.; Chen, L.; Liu, J.; Cai, H.; Deng, H.; Chen, G.; Yan, C.; Chen, Y. RSC Adv. 2015, 5, 22356. (f) Zhan, H.; Cao, H.; Qiu, H.; Li, N.; Chen, L.; Liu, J.; Cai, H.; Tan, J. RSC Adv. 2015, 5, 32205. (g) Zhan, H.; Zhao, L.; Li, N.; Chen, L.; Liu, J.; Liao, J.; Liao, J.; Cao, H. RSC Adv. 2014, 4, 32013. (h) Zhan, H.; Zhao, L.; Liao, J.; Li, N.; Chen, Q.; Qiu, S.; Cao, H. Adv. Synth. Catal. 2015, 357, 46.

(19) (a) Santra, S.; Bagdi, A. K.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2013, 355, 1065. (b) Husinec, S.; Markovic, R.; Petkovic, M.; Nasufovic, V.; Savic, V. Org. Lett. 2011, 13, 2286. (c) Gao, Y.; Yin, M. Z.; Wu, W. Q.; Huang, H. W.; Jiang, H. F. Adv. Synth. Catal. 2013, 355, 2263. (d) Huang, H. W.; Ji, X. C.; Tang, X. D.; Zhang, M.; Li, X. W.; Jiang, H. F. Org. Lett. 2013, 15, 6254. (e) Bagdi, A. K.; Rahman, M.; Santra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2013, 355, 1741. (f) Fu, H. Y.; Chen, L.; Doucet, H. J. Org. Chem. 2012, 77, 4473. (g) Stasyuk, A. J.; Banasiewicz, M.; Cyrański, M. K.; Gryko, D. T. J. Org. Chem. 2012, 77, 5552. (h) Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217. (i) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678. (j) Zheng, Z.; Qi, D.; Shi, L. Catal. Commun. 2015, 66, 83– 86.